Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Tópicos
Ano de publicação
Tipo de documento
Intervalo de ano
1.
HemaSphere ; 6:371-372, 2022.
Artigo em Inglês | EMBASE | ID: covidwho-2032140

RESUMO

Background: Therapy options are limited for COVID-19 patients with hematological disease, cancer, immunosuppression or adanced age. Een though no benefit was obsered for conalescent plasma in unselected patients with COVID-19, retrospectie data suggest that it could be effectie in patients unable to mount a sufficient immune response upon SARS-CoV-2 infection. Plasma from accinated donors has not been systematically assessed for COVID-19 treatment. Aims: We conducted a randomized clinical trial to address plasma efficacy in patients at high risk for an aderse outcome. Methods: COVID-19 patients with confirmed SARS-CoV-2 infections and oxygen saturation <=94% were randomized (NCT05200754). Patients receied conalescent or accinated SARS-CoV-2 plasma in two bags (238 - 337 ml plasma each) from different donors on day 1 and 2 (PLASMA) or standard of care (CONTROL). Randomization was stratified according to four clinical patient groups, hematological/solid cancer (group-1), treatment or disease associated immunosuppression (group 2), high risk disease by standard parameters (group-3) or age >=75 years (group-4). Mechanically entilated patients were not eligible. Plasma was obtained from donors with high leel neutralizing actiity (titer >=1:80) either after SARS-CoV-2 infection (conalescent) or after accination with at least two doses of mRNA accines (accinated). Crossoer for the control group was allowed at day 10. The primary endpoint was time to improement as two points on a seen-point ordinal scale or lie discharge from the Hospital (IMPROVEMENT) with prespecified analyses of subgroups (Janssen M, et al. Trials 2020 Oct 6;21(1):828). Results: A total of 133 patients were randomized with 68 receiing PLASMA with a median age of 68 years (range 36-95) or CONTROL (n=65, of which n=10 (15.4%) crossed oer at day 10) with a median age of 70 years (range 38-90). The distribution of the four predefined groups was group-1, n=53;group-2, n=18;group-3, n=35;and group-4, n=27. The intention to treat analysis reealed a non-significant shorter time to IMPROVEMENT for patients in PLASMA (median 12.5 days, 95%-CI [10;16]) compared to patients in CONTROL (median 18 days, 95%-CI [11;28] ), hazard ratio 1.24, 95% confidence interal [0.83;1.85], p=0.29). Oerall, 27 patients died (PLASMA, n=12;CONTROL, n=15;p=0.80). Predefined subgroup analysis reealed a clinically significant benefit in patients with hematological malignancies, other cancers or immunosuppression (group-1, group-2, n=71). With a median time to improement of 13 days (95%-CI [9;19]) for PLASMA and 32 days (95%-CI [17;57]) for CONTROL(HR 2.03, 95%-CI [1.17;3.6], p=0.01). A sensitiity analysis reealed that IMPROVEMENT appeared to be seen een earlier with accinated (median 10 days, 95%-CI [8;14]) compared to conalescent SARS-CoV-2 plasma (median 13 days, 95%-CI [6;38]) and CONTROL. Within group-1 and group-2, six patients in PLASMA (18.2%) and 10 in CONTROL (28.6%) died. No significant differences in improement were obsered in group-3 and group-4 with a HR of 0.72 (95%-CI [0.41;1.28], p=0.26). Within group-3 and group-4, six patients in PLASMA (18.8%) and fie in CONTROL (16.7%) died. No preiously unknown side effects of plasma therapy emerged within the trial. Summary/Conclusion: Plasma from conalescent and particularly accinated donors improed outcome of COVID-19 patients with an underlying hematological disease /cancer or other reasons of impaired immune response. Plasma did not improe outcome in immune-competent patients with other risk factors and/or older age. (Figure Presented).

2.
Viruses ; 13(5):24, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1209150

RESUMO

The emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We, therefore, aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome. Proteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a COVID-19 case cohort (n = 48 hospitalized patients from Heidelberg) as well as n = 85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial enzyme-linked immunosorbent (ELISA) assays. A sensitivity of 100% (95% CI: 86-100%) was achieved in COVID-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96-100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response. This newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA